
axoniq.io1

DDD, CQRS and
Event Sourcing
Explained
An explanation of the concepts at the basis of Event-Driven Microservices.

Allard Buijze - 2019

axoniq.io2

DDD, CQRS and Event Sourcing Explained

WHITEPAPER

Microservices started to get popular around 2014 although the term was coined a few years

earlier. As the interest has spread, the term has unfortunately become vaguer and today

microservices is commonly seen as just a distributed system architecture.

During the recent years both event-driven architecture (EDA) and event sourcing has drawn

an increasing interest, to some extent due to the interest in microservices which requires an

effective way of communicating between services. These concepts have also brought some

confusion about what they really mean and how they affect the architecture and design of

applications.

In this white paper we describe the basic concepts, common misunderstandings we have seen

and how the Axon platform helps by providing the foundation for building asynchronous

message-driven systems based on the concepts of microservices, event-driven architecture

and event sourcing. But using the same basic concepts and ideas Axon also supports developing

applications that start as a monolith and later evolve into event-driven microservices without

significant refactoring as the requirements change.

Domain-driven design (DDD)
DDD is an important approach when working

with complex domains and even more important

in the context of microservices. DDD has been

around for more than 15 years but has received

an increased interest due to microservices.

Concepts like bounded context are important

for finding the boundaries between modules

or services from a business perspective,

whether in monolithic or microservices based

applications. Ubiquitous language is another

important concept — a common language used

by developers, businesspeople, and others

involved in a specific bounded context to improve

the understanding and minimizing the risk of

misunderstanding.

Aggregates is a term at a more technical level and

describes sets of entities that work together. An

aggregate is composed of one or more entities

that must always be consistent — the aggregate

is a transactional consistency boundary. After

one or more changes of the entities within an

aggregate it must always end up being consistent

when the transaction is committed. Especially

in distributed, eventually consistent systems,

the aggregate is an essential concept to ensure

correctness on the longer term.

axoniq.io3

WHITEPAPER

Monolith
A monolith in the software context is a single

application deployed as one binary. Building a

monolith has for a long time been the standard

way of building applications or systems.

Modularity as a way of simplifying has been

around as long as the software industry itself

and a well-designed, modularized monolith is

for many applications a perfectly well-suited

type of architecture. Unfortunately, they are in

practise often not well structured which can lead

to problems maintaining them, and in the worst

case to a Big Ball of Mud.

A well-designed monolith is using a component-

based design with each component or module

responsible for a specific part of the business

— a subdomain or a bounded context in DDD

language. If for some reason the need to move out

part of the monolith into separately deployable

units (microservices) arises, this is now feasible.

Note though that this should only be done

because of non-functional requirements.

One problem when splitting out microservices

from a monolith is communication. Within the

monolith direct object calls can be used, but

with microservices, communication is done

over the network. Using Axon and its location

transparency (explained further down) and

always sending messages this problem is

mitigated.

Microservices
The concepts and patterns that are the base of

microservices have been known and described

for years before the term microservices was

established. Service boundaries, asynchronous

message based communication, application

databases, etc. are all well known concepts that

have been in use for many years.

The main reason for adopting microservices

should be communication between people. It’s

hard to work effectively on a piece of software

with too many engineers, so we need teams to be

able to work independently on different parts of a

system. With well-designed microservices, teams

can implement, deploy and run their services

independently and with minimal impact on

other teams. Sometimes present or foreseeable

scalability issues are also a reason to work with

microservices.

But microservices also comes with additional

complexity, both from a technical and a domain

or business perspective. Finding the correct

bounded contexts and service boundaries,

and communication between services are just

two of a number of challenges that comes with

microservices.

Finding the right set of bounded contexts from

the beginning is very important when starting

a microservices. Refactoring and moving

functionality between services is much harder

DDD, CQRS and Event Sourcing Explained

axoniq.io4

WHITEPAPER

than working within a monolith.

Microservices never work in isolation, they

always need data from other services. Common

ways of communication are request - response,

maybe using HTTP, and publish - subscribe or

some other messaging pattern. Data ownership

and read-only copies of data are other issues that

appear in a microservices architecture.

A common saying among architects and engineers

with experience from distributed systems is that

if you can’t build a monolith, forget about building

microservices.

Event-Driven Architecture
With the increased usage of microservices, there

is also demand for communication between all

services. Events are a great way to asynchronously

distribute information about things happening at

a business level in a service. A customer service

can publish information about new customers or

that a customer has moved to a new address. But

events are not enough; commands and queries

are two types of messages that are also essential

to achieve a well-designed application built on

an ‘event-driven’ architecture, so this type of

architecture should really be called Message-

Driven Architecture.

An important part of emitting events is that the

publisher doesn’t care if anyone is listening, if

no one is listening to the emitted events the

publishing service should still be able to perform

its tasks.

There is a common misunderstanding today that

a service that wants something to be done in

another service publishes an event. This makes

the responsibility for the outcome of the business

task at hand unclear, and often creates a need

for close monitoring of all individual events in an

attempt to find problems in a business flow. This

uncertainty is very close to the pinball machine

architecture style sometimes mentioned in

connection with serverless architecture where

it can be hard to understand where data is and

what functions are invoked.

If the publisher expects something to happen it

should instead asynchronously send a request

to another service as a command, and then

asynchronously wait for the outcome. This makes

it clear that the service sending the command is

responsible for fulfilment of the business task at

hand.

One example is an Order fulfilment service

that requires a payment for an order before it

continues with the order. The service sends an

asynchronous command to a Payment service.

When the payment has been completed the

Payment service returns success, or failure if the

payment has failed. The return message is picked

up by the Order fulfilment service which now can

continue with the order and request shipment

if payment was successful. In this scenario the

Order fulfilment service is aware of a Payment

DDD, CQRS and Event Sourcing Explained

axoniq.io5

WHITEPAPER

service, which is correct, but the Payment service

is not aware of what the payment is for.

If the business now decides to ship to a trusted

customer before payment has been received, this

can easily be handled within the Order fulfilment

service without touching any other services. In a

pure event-driven approach this change would

require changes to at least a couple of services,

potentially to many services.

In this scenario, the Payment service has full

responsibility of handling the payment, which

may include asking the customer for a new credit

card or other information to be able to complete

the payment. This process that may take hours

or even days if the customer never responds to

a failing payment but that is not a problem. If

the payment is never completed, eventually the

Payment service will cancel the payment and

return a failure to the requesting service.

Events should have a focus on behaviour and

correspond to events at a business level. A

service should not just emit events that data

have changed, but describe changes that

have a meaning to the business. Instead of

a CustomerChanged event emitted when a

customer has moved to a new address, a better

event might be CustomerMoved. Modelling

events in this way forces a behavioural focus

instead of on structure, which is beneficial

from a DDD perspective and makes it easier to

understand what an application is doing. Events

mimicking real world events in the domain often

also result in less changes because domains don’t

change that often.

Events and messages
As already described, there are three major types of messages in an EDA:

•	 An Event represents something that has happened. They are an immutable fact and can therefore

not be changed or deleted.

•	 A Command represents an action that the sender wants the recipient to perform. The result of the

execution is then returned to the sender. Commands always have exactly one destination.

•	 A Query represents a request of information the sender wants from one or more recipients. The

requested data is then fetched and returned to the sender.

An important aspect of events is that they are immutable, they represent a fact of something that has

happened and must never be updated or deleted. One option when the need to change or remove

events arises, a new output event stream can be created and used to create new events from the original

immutable stream of events.

DDD, CQRS and Event Sourcing Explained

axoniq.io6

WHITEPAPER

Eventual Consistency
The world is eventually consistent. Transfer

of money between two accounts in different

banks is a chain of transfers that eventually

will be correctly reflected in both accounts.

Unfortunately, strong consistency has for a long

time been the norm in the software community.

Everything must be in sync, sometimes even

between services, which has meant the use of

different types of complex transaction protocols

which has added a lot of unnecessary complexity

to systems. With microservices the software

community is adopting eventual consistency;

changes in one service are transferred to other

services using events, messages or other forms

of transports that eventually will be consistent

with the emitting service . But, it is also important

to understand that each individual aggregate,

wherein decisions are made, must always be

consistent. It’s the result of these decisions that

are eventually “visible” to other components.

While eventual consistency is an inevitable

concept in large-scale distributed systems,

not everything in such system is eventually

consistent. Certain decisions within a business

domain should never be made on inconsistent

data. Within an eventually consistent system,

there are several individual components that

are internally strictly consistent. The aggregate

described earlier is such a component. These

strictly consistent components allow for

decisions to be made based on a reliable and

consistent source of information, while the

results of those decisions eventually get updated

accordingly in other components.

CQRS
Command Query Responsibility Segregation (CQRS) is quite a simple concept. It states that execution

of a command should be segregated from queries returning state. For a software system this means that

the part that changes the state is separated from the part that queries the state.

DDD, CQRS and Event Sourcing Explained

axoniq.io7

WHITEPAPER

This has several advantages. A command should

affect one aggregate only, whereas a query often

retrieve a larger amount of data or lists of data,

which means we can minimize the effect of a

write and optimize the amount of data retrieved.

It’s also possible to use separate types of storage

for writes and reads, which enables the use of

event sourcing. Often reads have to be more

performant than writes and with a separate read

model this model can be optimized for reads.

But this separation also means the read model

will be updated by things happening on the

write side. Doing this asynchronously means a

command may not be reflected in an immediately

following read — the application itself is now

eventually consistent which may have to be

considered in e.g. a GUI.

Event sourcing
The ideas of event sourcing are not new, systems

were sometimes built this way in mainframes

a long time ago, and databases often work with

event sourcing internally.

In event sourcing the state of a business entity is

persisted as a time-ordered sequence of events.

When the state of the entity changes, a new

event is appended to the list of events. Current

state of the entity is created by replaying all the

events. Periodically saving a snapshot of current

state is a way to optimize loading when an entity

has a large number of events.

When using event sourcing within a component

or a service you get a complete and reliable

audit trail of that service. Past state can also be

reconstructed by replaying all events up to a

certain point in time which can be useful when

evaluating the result of bugs in a system. It’s also

easy to migrate from event sourcing to state-

storage-with-events-as-side-effect, but not vice

versa.

Commonly, a whole system should not be event

sourced. Instead the use of event sourcing should

be a decision made per bounded context, or

possibly per aggregate. One important argument

DDD, CQRS and Event Sourcing Explained

axoniq.io8

WHITEPAPER

for when to use event sourcing is if state

transitions are an important part of the problem

space and should be modelled within the domain.

As already mentioned, modelling using events,

a lot of problems in a domain will go away. In

industries like finance, banking or insurance the

event sourcing concept is often used. One reason

is the need to keep everything that happens.

Event sourcing events should not be published

outside of the bounded context. Within one

context all services speak the same language

and can understand and may share all events,

publishing to the outside will create unnecessary

dependencies. Instead, create domain events

for the published interface of a context. One

exception to this is services used for analytics or

reporting.

One argument often used for event sourcing

is the possibility for replaying events in case an

error is detected. This can look harmless for the

service doing the replay — it just replays all of

or part of an event stream from another service

and reconstitutes its state. But if this service

also emits events, the replay probably has an

effect on these already emitted events which

has already been consumed by services further

down the chain. This causes a ripple effect with

unforeseeable impact on the whole system. If an

event in practice is handled as a command – an

order has been placed — it may result in the order

fulfilled twice. A replay must therefore be done

with care, deciding if the result of a read event

should be carried out or not.

Location transparency
One important concept to enable a move

from a monolith to microservices is location

transparency — a component should neither be

aware of, nor make any assumptions about the

location of a component it interacts with. This

allows for a system to migrate from a structured

monolith, where all components are deployed as

part of the same unit, to a microservices system,

with each component deployed individually. All

done without any changes to code. Commonly

location transparency is done by using messaging

in some form.

DDD, CQRS and Event Sourcing Explained

axoniq.io9

WHITEPAPER

Events and messages
Architecture of a new application or system should

be as simple as possible but still allow for a growth

if the need arises. A great start for many systems is

a message-driven modular and component based

monolith, event sourced in parts where it’s needed.

It probably uses the hexagonal architecture style

internally and leans on the Axon platform to provide

most of the infrastructure and enable for a migration

to microservices if the application usage is a success.

This style of building a monolith is beneficial even

if it’s never split up in microservices. It simplifies

maintenance, updates of business logic, etc.

Splitting up the architecture
Gradually evolving from a modular monolith to

microservices is greatly simplified if the monolith is

built for this from the beginning and is using Axon.

Each microservice becomes independently scalable,

allowing it to address the non-functional aspects

specific to each microservice instance.

DDD, CQRS and Event Sourcing Explained

axoniq.io10

WHITEPAPER

Axon
Axon is a framework and a server, both open

source, that together builds a platform for event-

driven microservices based systems that provides

the foundation and infrastructure needed for

successful design and implementation of systems

overcoming the challenges described.

In Axon all communication between components

is done using message objects. This gives these

components the location transparency needed to

be able to scale and distribute these components

when necessary, without any changes to

business logic. It also means that an application

only has to be split across deployable units if

the non-functional requirements, such as team

size, release cycle, availability requirements,

performance, etc. require so.

Axon Framework

Axon Framework provides the building blocks

for applications based on principles like DDD,

CQRS and event sourcing. Axon Framework has

been designed to separate the business logic

from infrastructural concerns and it supports an

evolutionary approach by supporting a monolith

to evolve into microservices.

Axon heavily stimulates the separation of logic

into smaller components, which communicate

with each other through messages. This

significantly reduces the mental burden on

developers working with specific components,

letting them focus on the logic correlated to a

specific message, instead of all the infrastructure

needed for handling the messages themselves.

Location transparency is a key element in

the framework ensuring that a component

communicating with another component do not

need to know where that other component is

located.

DDD, CQRS and Event Sourcing Explained

axoniq.io11

WHITEPAPER

As already mentioned, replaying events can

be extremely complicated. Axon Framework

provides granular control to event handlers in

terms which events get replayed and which don’t.

Also, it is possible to monitor the progress of the

replay procedure.

Axon Server
Axon Server is a message router and an event

store used in a distributed environment.

Axon Server is responsible for routing of

messages between all services. It has knowledge

about the different types of messages that are

being used and know how to deal with each

type; events are sent from one service to one or

many other services, commands are sent to one

service to do something, potentially waiting for

and returning result, and queries are sent to one

or more services to retrieve information, always

returning a result.

Axon Server also includes a purpose-built event

store, used for storing the events created by

event sourced aggregates. When storing events,

it also pushes the event to listeners and event

processors that are running, thus removing

the need for regular polling and the latency

that it brings. One important feature is the

constant performance irrespective of storage

size. The number of events can be extremely

high in an event sourced system and a storage

that becomes slower as it fills up will lead to

significant performance degradation for the

whole system. Other important features include

the possibility to append multiple events in one

transaction, snapshots for storing current state

of an aggregate, thus avoiding the need to read

potentially a large number of events to create

state. It is also optimized for recent events.

Especially when using snapshots, only the most

recent events are read from the store.

As already described, replaying events should be

done with care. Events emitted publicly, or event

handlers contacting some external systems can

cause huge and irrecoverable problems. In Axon,

gateways to other systems can be disabled when

event are replayed. Axon also provides granular

control over event handlers deciding which

components need to get their events replayed.

AxonServer Enterprises comes with the ability

to run in a clustered environment. This helps

ensure that any failure of a single node will not

impact the availability of the cluster as a whole,

giving it availability guarantees that you may

expect from any production-grade system.

Axon Server’s multi-context support allows for

separate teams or departments to manage their

own virtual environment on a centrally deployed

cluster, simpifying operations in enterprise

environments.

Are you interested in using Axon or do you have any questions?
Then don’t hesitate to contact us via info@axoniq.io.

DDD, CQRS and Event Sourcing Explained

axoniq.io12

WHITEPAPER

References
A great and thorough definition of Microservices, written by James Lewis and Martin Fowler back in

2014 when the term was new.

https://martinfowler.com/articles/microservices.html

A blog post by Martin Fowler where he writes that he have noticed a pattern where almost all the

successful microservice stories has started with a monolith.

https://www.martinfowler.com/bliki/MonolithFirst.html

Stefan Tilkov wrote in a blog post shortly after Martin Fowler’s blog post that he is firmly convinced that

when the goal is a microservices architecture, starting with a monolith is usually the wrong thing to do.

https://martinfowler.com/articles/dont-start-monolith.html

Eric Evans described in his keynote at DDD Europe 2019 different kinds of bounded contexts, some that

may be especially useful in an event based system.

https://www.infoq.com/news/2019/06/bounded-context-eric-evans/

Martin Fowler describes event-driven applications and the potential problem with event notification in

a business flow.

https://martinfowler.com/articles/201701-event-driven.html

A series of blog posts from 2008 that describes many of the design ideas and patterns that led to

microservices. Note that the blog post are from a time when SOA was popular and before the experience

of using microservices, so some ideas may in some parts have changed.

http://bill-poole.blogspot.com/

A three part story where Vaughn Vernon in detail describes how to implement aggregates using DDD.

https://kalele.io/effective-aggregate-design/

The AxonIQ website has lots of information about the core principles and architectural concepts behind

Axon. There is also a reference guide and a quick start guide.

https://axoniq.io/

DDD, CQRS and Event Sourcing Explained

